作者单位
摘要
1 国网安徽省电力有限公司, 安徽 合肥 230000
2 国网安徽省电力有限公司建设分公司, 安徽 合肥 230071
为了实现最优路线规划, 促进架空地线节能降损, 研究基于多目标进化算法的输电线路架空地线节能接地技术。以架空地线路线遭受地质灾害风险最低、运行安全系数最高为目标, 搭建输电线路架空地线路线优化模型; 采用多目标进化算法求解模型, 获取路线优化方案; 依据实际地质情况选择单回或多回线路架空地线节能接地技术。实验结果表明:采用所提技术可获取符合目标函数及约束条件的输电线路架空地线路线优化方案, 选取节能接地方式为单回线路两根架空地线, 每段架空地线的节距为6.4 km, 接地点选在各段地线的中间点, 该接地方式较上一年度电能损耗下降60%~69%, 节能效果突出。
多目标进化算法 输电线路 架空地线 节能接地 纵向切割线 multi-objective evolutionary algorithm transmission line overhead ground line energy-saving grounding vertical cutting line 
光学与光电技术
2022, 20(6): 117
德吉卓嘎 1,2王玮 1,2德吉措姆 1,2田蕾 3[ ... ]高鹏 4,5,*
作者单位
摘要
1 西藏自治区食品药品检验研究院拉萨 850000
2 (国家药品监督管理局中药(藏药)质量控制重点实验室 拉萨 850000)
3 四川大学成都 610000
4 四川省原子能研究院成都 610101
5 辐照保藏四川省重点实验室成都 610101
为研究电子束辐照对藏药八味沉香散灭菌效果和其有效成分的影响,采用电子束(0 kGy、5 kGy、7 kGy、10 kGy)和60Co γ(7 kGy)辐照三个厂家生产的产品,分别在处理后以及在49 ℃加速贮藏3个月后检测微生物指标和有效成分的变化。结果表明:经不同剂量处理后,电子束辐照和60Co γ辐照均能显著降低八味沉香散内微生物数量至达标;电子束5 kGy辐照后,样品的微生物总数已降低至《中国药典》的要求限度,且其有效成分没有明显变化,吸收剂量至10 kGy时,对其有效成分含量也基本无影响。因此,电子束辐照可以有效提高八味沉香散的卫生指标,5 kGy为八味沉香散的最佳辐照工艺剂量。
电子束 辐照灭菌 八味沉香散 微生物存活数 有效成分 Electron beam Irradiation sterilization Bawei Chenxiang powder Total number of microorganisms Active ingredients 
辐射研究与辐射工艺学报
2022, 40(5): 050402
作者单位
摘要
1 中国电力科学研究院,北京 100041
2 清华大学 电子工程系,北京 100084
3 东南大学 电子科学与工程学院,江苏 南京 210096
水下无线光传输以蓝绿激光为载体,传输速度快,实时性强,在海洋勘探、海洋通信等方面起着非常重要的作用。然而光束自身的发散及其受水吸收和散射作用影响,导致传输过程中能量损失,接收端信号微弱。为了提高光束在水中的传输效率,本文提出了一种基于哈达玛基编码算法的光束整形模块,通过空间光调制器对波前相位进行调制,将光束分为参考光束和调制光束,并通过四步相移计算两种光的相位角,在多次变换中寻找最优全息图,聚焦接收端处的光束,减小光能经过水下信道后的损失。该研究成果有效地提升了不同距离下接收端的能量,实验结果显示,调制越精细,光束聚焦效果越好,达到了15 m处接收端中心能量2.3倍的提升。
光束整形 哈达玛基编码算法 空间光调制器 beam shaping hadamard encoding algorithm liquid crystal on silicon 
液晶与显示
2022, 37(11): 1453
田磊 1,2李志毅 1,2刘冠豪 1,2王鹰 1,2
作者单位
摘要
1 中国科学院 理化技术研究所, 北京 100190
2 中国科学院大学, 北京 100049
在有机发光二极管(OLEDs) 30多年的发展过程中, 器件结构设计和功能材料开发是实现器件高效率发光的关键。倒置结构器件被认为是实现OLEDs器件高效率、长寿命的一种可行方案。但倒置器件以ITO为阴极造成了器件电子注入势垒过大, 限制了倒置器件的进一步发展。本文以实现倒置器件电子注入原理的不同, 分别介绍了n型掺杂、偶极层修饰和隧穿注入等方法在提高ITO阴极电子注入性能的相关研究工作。最后, 对提高倒置器件电子注入性能的3种不同策略进行了总结和展望。
有机发光二极管 倒置结构 电子注入 n型掺杂 偶极层 organic light-emitting diodes inverted structure electron injection n-type doping dipole layer 
液晶与显示
2021, 36(1): 39
Author Affiliations
Abstract
1 University of California, Department of Bioengineering, Los Angeles, California, United States
2 University of Arizona, James C. Wyant College of Optical Sciences, Tucson, Arizona, United States
3 University of Connecticut, Department of Biomedical Engineering, Storrs, Connecticut, United States
4 University of Connecticut, Department of Electrical and Computer Engineering, Storrs, Connecticut, United States
5 Boston University, Department of Electrical and Computer Engineering, Boston, Massachusetts, United States
Optical imaging has served as a primary method to collect information about biosystems across scales—from functionalities of tissues to morphological structures of cells and even at biomolecular levels. However, to adequately characterize a complex biosystem, an imaging system with a number of resolvable points, referred to as a space-bandwidth product (SBP), in excess of one billion is typically needed. Since a gigapixel-scale far exceeds the capacity of current optical imagers, compromises must be made to obtain either a low spatial resolution or a narrow field-of-view (FOV). The problem originates from constituent refractive optics—the larger the aperture, the more challenging the correction of lens aberrations. Therefore, it is impractical for a conventional optical imaging system to achieve an SBP over hundreds of millions. To address this unmet need, a variety of high-SBP imagers have emerged over the past decade, enabling an unprecedented resolution and FOV beyond the limit of conventional optics. We provide a comprehensive survey of high-SBP imaging techniques, exploring their underlying principles and applications in bioimaging.
space-bandwidth product bioimaging gigapixel imaging high resolution wide field of view 
Advanced Photonics
2021, 3(4): 044001
Author Affiliations
Abstract
1 School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
2 Smart Computational Imaging Laboratory (SCILab), Nanjing University of Science and Technology, Nanjing 210094, China
3 Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, USA
4 e-mail: leitian@bu.edu
We propose label-free and motion-free resolution-enhanced intensity diffraction tomography (reIDT) recovering the 3D complex refractive index distribution of an object. By combining an annular illumination strategy with a high numerical aperture (NA) condenser, we achieve near-diffraction-limited lateral resolution of 346 nm and axial resolution of 1.2 μm over 130 μm×130 μm×8 μm volume. Our annular pattern matches the system’s maximum NA to reduce the data requirement to 48 intensity frames. The reIDT system is directly built on a standard commercial microscope with a simple LED array source and condenser lens adds-on, and promises broad applications for natural biological imaging with minimal hardware modifications. To test the capabilities of our technique, we present the 3D complex refractive index reconstructions on an absorptive USAF resolution target and Henrietta Lacks (HeLa) and HT29 human cancer cells. Our work provides an important step in intensity-based diffraction tomography toward high-resolution imaging applications.
Photonics Research
2020, 8(12): 12001818
Author Affiliations
Abstract
1 Nanjing University of Science and Technology, School of Electronic and Optical Engineering, Nanjing, Jiangsu, China
2 Boston University, Department of Electrical and Computer Engineering, Boston, Massachusetts, United States
We demonstrate a label-free, scan-free intensity diffraction tomography technique utilizing annular illumination (aIDT) to rapidly characterize large-volume three-dimensional (3-D) refractive index distributions in vitro. By optimally matching the illumination geometry to the microscope pupil, our technique reduces the data requirement by 60 times to achieve high-speed 10-Hz volume rates. Using eight intensity images, we recover volumes of ~350 μm × 100 μm × 20 μm, with near diffraction-limited lateral resolution of ~ 487 nm and axial resolution of ~ 3.4 μm. The attained large volume rate and high-resolution enable 3-D quantitative phase imaging of complex living biological samples across multiple length scales. We demonstrate aIDT’s capabilities on unicellular diatom microalgae, epithelial buccal cell clusters with native bacteria, and live Caenorhabditis elegans specimens. Within these samples, we recover macroscale cellular structures, subcellular organelles, and dynamic micro-organism tissues with minimal motion artifacts. Quantifying such features has significant utility in oncology, immunology, and cellular pathophysiology, where these morphological features are evaluated for changes in the presence of disease, parasites, and new drug treatments. Finally, we simulate the aIDT system to highlight the accuracy and sensitivity of the proposed technique. aIDT shows promise as a powerful high-speed, label-free computational microscopy approach for applications where natural imaging is required to evaluate environmental effects on a sample in real time.
computational microscopy three-dimensional imaging diffraction tomography phase retrieval 
Advanced Photonics
2019, 1(6): 066004
Yao Fan 1,2,3†Jiasong Sun 1,2,3†Qian Chen 1,2,5Xiangpeng Pan 1,2,3[ ... ]Chao Zuo 1,2,3,*
Author Affiliations
Abstract
1 School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
2 Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing University of Science and Technology, Nanjing 210094, China
3 Smart Computational Imaging (SCI) Laboratory, Nanjing University of Science and Technology, Nanjing 210094, China
4 Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, USA
5 e-mail: chenqian@njust.edu.cn
Differential phase contrast microscopy (DPC) provides high-resolution quantitative phase distribution of thin transparent samples under multi-axis asymmetric illuminations. Typically, illumination in DPC microscopic systems is designed with two-axis half-circle amplitude patterns, which, however, result in a non-isotropic phase contrast transfer function (PTF). Efforts have been made to achieve isotropic DPC by replacing the conventional half-circle illumination aperture with radially asymmetric patterns with three-axis illumination or gradient amplitude patterns with two-axis illumination. Nevertheless, the underlying theoretical mechanism of isotropic PTF has not been explored, and thus, the optimal illumination scheme cannot be determined. Furthermore, the frequency responses of the PTFs under these engineered illuminations have not been fully optimized, leading to suboptimal phase contrast and signal-to-noise ratio for phase reconstruction. In this paper, we provide a rigorous theoretical analysis about the necessary and sufficient conditions for DPC to achieve isotropic PTF. In addition, we derive the optimal illumination scheme to maximize the frequency response for both low and high frequencies (from 0 to 2NAobj) and meanwhile achieve perfectly isotropic PTF with only two-axis intensity measurements. We present the derivation, implementation, simulation, and experimental results demonstrating the superiority of our method over existing illumination schemes in both the phase reconstruction accuracy and noise-robustness.
Photonics Research
2019, 7(8): 08000890
Author Affiliations
Abstract
1 Boston University, Department of Electrical and Computer Engineering, Boston, Massachusetts, United States
2 Washington University in St. Louis, Department of Electrical and Systems Engineering, St. Louis, Missouri, United States
3 Washington University in St. Louis, Department of Computer Science and Engineering, St. Louis, Missouri, United States
We introduce a computational framework that incorporates multiple scattering for large-scale three-dimensional (3-D) particle localization using single-shot in-line holography. Traditional holographic techniques rely on single-scattering models that become inaccurate under high particle densities and large refractive index contrasts. Existing multiple scattering solvers become computationally prohibitive for large-scale problems, which comprise millions of voxels within the scattering volume. Our approach overcomes the computational bottleneck by slicewise computation of multiple scattering under an efficient recursive framework. In the forward model, each recursion estimates the next higher-order multiple scattered field among the object slices. In the inverse model, each order of scattering is recursively estimated by a nonlinear optimization procedure. This nonlinear inverse model is further supplemented by a sparsity promoting procedure that is particularly effective in localizing 3-D distributed particles. We show that our multiple-scattering model leads to significant improvement in the quality of 3-D localization compared to traditional methods based on single scattering approximation. Our experiments demonstrate robust inverse multiple scattering, allowing reconstruction of 100 million voxels from a single 1-megapixel hologram with a sparsity prior. The performance bound of our approach is quantified in simulation and validated experimentally. Our work promises utilization of multiple scattering for versatile large-scale applications.
multiple scattering digital holography particle localization 
Advanced Photonics
2019, 1(3): 036003
田磊 1,2,*
作者单位
摘要
1 西安邮电大学 电子工程学院, 西安 710121
2 西北大学 现代物理研究所, 西安 710069
研制了一种具有高响应速度的光电耦合器芯片, 采用Nbody-Nwell-Psub模型构建了具有对称结构的光电探测阵列(PD), 在完成光电转换的前端处理的过程中, 缩短了光电转换的响应时间, 提高了光电耦合器整片的响应速度。详细设计了PD的结构, 并对使用该结构的光电耦合器整片进行了仿真和实测。实测结果表明, 整片器件的上升时间为16ns, 下降时间为14ns, 上升传输时延为205ns, 下降时延为155ns, 芯片整体运行正常, 可用于高速响应的控制系统中。
高速响应 光电耦合器 光电检测阵列 对称结构 响应时间 high speed response optical coupler photo detectors symmetrical structure response time 
半导体光电
2016, 37(5): 632

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!